首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28462篇
  免费   672篇
  国内免费   187篇
电工技术   315篇
综合类   227篇
化学工业   4054篇
金属工艺   2274篇
机械仪表   2657篇
建筑科学   767篇
矿业工程   169篇
能源动力   6474篇
轻工业   465篇
水利工程   73篇
石油天然气   93篇
武器工业   23篇
无线电   995篇
一般工业技术   6397篇
冶金工业   390篇
原子能技术   190篇
自动化技术   3758篇
  2024年   18篇
  2023年   1144篇
  2022年   665篇
  2021年   748篇
  2020年   1483篇
  2019年   1257篇
  2018年   789篇
  2017年   1460篇
  2016年   1701篇
  2015年   1701篇
  2014年   2065篇
  2013年   2206篇
  2012年   1482篇
  2011年   1396篇
  2010年   1514篇
  2009年   1633篇
  2008年   694篇
  2007年   1173篇
  2006年   1121篇
  2005年   772篇
  2004年   468篇
  2003年   528篇
  2002年   651篇
  2001年   659篇
  2000年   383篇
  1999年   469篇
  1998年   225篇
  1997年   154篇
  1996年   194篇
  1995年   76篇
  1994年   43篇
  1993年   25篇
  1992年   19篇
  1991年   25篇
  1990年   26篇
  1989年   12篇
  1988年   22篇
  1987年   19篇
  1986年   18篇
  1985年   35篇
  1984年   40篇
  1983年   36篇
  1982年   25篇
  1981年   31篇
  1980年   23篇
  1979年   26篇
  1978年   15篇
  1977年   13篇
  1976年   12篇
  1974年   10篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Metals and alloys forming reversible hydrides with hydrogen gas are potential building blocks for compact, solid state hydrogen storage systems. Based on the materials’ thermodynamic characteristics, their use as temperature-swing gas compression and delivery systems in the hydrogen economy is also possible. Given the wide variety of materials developed and tested at laboratory and pilot scales, a harmonized method of selecting the feasible material(s) for a particular real-life application is required. This study proposes a system selection framework based on a normalized, multi-criteria metric. Using calculated values of multi-criteria metric, multi-criteria screening and ranking of potential materials has been demonstrated for a particular use case. It is found that the alloy TiMn1.52 having value of additive metric between 0.25 and 0.35 represents the best material for a single stage system. The alloy pair CaNi5–Ti1.5CrMn represents the best alternative for a two-stage system with additive metric values between 0.63 and 0.82. Energy and economic characteristics of the metal hydride gas compression and delivery systems are evaluated and compared with an equivalent mechanical compression system producing the same final effect (i.e., delivery of a given quantity of gas at a defined pressure).  相似文献   
2.
In the present study, non-premixed combustion and NOx emission of H2, NH3, C3H8, and CH4 fuels have been studied in a combustion test unit under lean mixture conditions (λ = 4) at 8.6 kW thermal capacity. Furthermore, the combustion and NOx emission of the H2, C3H8, and CH4 fuels have been investigated for various NH3 enrichment ratios (5, 10, 20, and 50%) and excess air coefficients (λ = 1.1, 2, 3, and 4) at the same thermal capacity. The obtained results have been compared for each fuel. Numerical simulation results show that H2 emits intense energy through the reaction zone despite the lowest fuel consumption in mass, among others, due to its high calorific value. Therefore, it has a higher flame temperature than others. At the same time, C3H8 has the lowest flame temperature. Besides, NH3 has the shortest flame length among others, while C3H8 has the most extended flame form. The highest level of NOx is released from the NH3 flame in the combustion chamber, while the lowest NOx is released from the CH4. However, the lowest NOx emission at the combustion chamber exit is obtained in NH3 combustion, while the highest NOx emission is obtained with H2 combustion. It results from the shortest flame length of NH3, short residence time, and backward NOx reduction to N2 for NH3. As for H2, high flame temperature and relatively long flame, and high residence time of the products trigger NOx formation and keep the NOx level high. On the other hand, excess air coefficient from 1.1 to 2 increases NOx for H2, CH4, and NH3 due to their large flame diameters, unlike propane. Then, NOx emission levels decrease sharply as the excess air coefficient increases to 4 for each fuel. NH3 fuel also emits minimum NOx in other excess air coefficients at the exit, while H2 emits too much emission. With NH3 enrichment, the NOx emissions of H2, CH4, and C3H8 fuels at the combustion chamber exit decrease gradually almost every excess air coefficient apart from λ = 1.1. As a general conclusion, like renewable fuels, H2 appears to be a source of pollution in terms of NOx emissions in combustion applications. In contrast, NH3 appears to be a relatively modest fuel with a low NOx level. In addition, the high amount of NOx emission released from H2 and other fuels during the combustion can be remarkably reduced by NH3 enrichment with an excess air combustion.  相似文献   
3.
《Ceramics International》2022,48(11):15207-15217
SCAPS solar cell simulation program was applied to model an inverted structure of perovskite solar cells using Cu-doped Ni1-xO thin films as hole transport layer. The Cu-doped Ni1-xO film were made by co-sputtering deposition under different deposition conditions. By increasing the amount of the Cu-dopant, the film crystallinity enhanced whereas the bandgap energy decreased. The transmittance of the thin films decreased significantly by increasing the sputtering power of copper. High quality, uniform, compact, and pin-hole free films with low surface roughness were achieved. The structural, chemical, surface morphology, optical, electrical, and electronic properties of the Cu doped Ni1-xO films were used as input parameters in the simulation of Pb-based (MAPbI3-xClx) and Pb-free (MAGeI3) perovskite solar cells. Simulation results showed that the performance of both Pb-based and Pb-free perovskite solar cell devices significantly enhanced with Cu-doped Ni1-xO film. The highest power conversion efficiency (PCE) for the Pb-free perovskite solar cell is 8.9% which is lower than the highest PCE of 17.5% for the Pb-based perovskite solar cell.  相似文献   
4.
It is clear that the entire world have to research, develop, demonstrate and plan for alternative energy systems for shorter term and also longer term. As a clean energy carrier, hydrogen has become increasingly important. It owes its prestige to the increase within the energy costs as a result of the equivocalness in the future availability. Two phase flow and hydrogen gas flow dynamics effect on performance of water electrolysis. Hydrogen bubbles are recognized to influence energy and mass transfer in gas-evolving electrodes. The movement of hydrogen bubbles on the electrodes in alkaline electrolysis is known to affect the reaction efficiency. Within the scope of this research, a physical modeling for the alkaline electrolysis is determined and the studies about the two-phase flow model are carried out for this model. Internal and external forces acting on the resulting bubbles are also determined. In this research, the analytical solution of two-phase flow analysis of hydrogen in the electrolysis is analyzed.  相似文献   
5.
Machine learning algorithms have been widely used in mine fault diagnosis. The correct selection of the suitable algorithms is the key factor that affects the fault diagnosis. However, the impact of machine learning algorithms on the prediction performance of mine fault diagnosis models has not been fully evaluated. In this study, the windage alteration faults (WAFs) diagnosis models, which are based on K-nearest neighbor algorithm (KNN), multi-layer perceptron (MLP), support vector machine (SVM), and decision tree (DT), are constructed. Furthermore, the applicability of these four algorithms in the WAFs diagnosis is explored by a T-type ventilation network simulation experiment and the field empirical application research of Jinchuan No. 2 mine. The accuracy of the fault location diagnosis for the four models in both networks was 100%. In the simulation experiment, the mean absolute percentage error (MAPE) between the predicted values and the real values of the fault volume of the four models was 0.59%, 97.26%, 123.61%, and 8.78%, respectively. The MAPE for the field empirical application was 3.94%, 52.40%, 25.25%, and 7.15%, respectively. The results of the comprehensive evaluation of the fault location and fault volume diagnosis tests showed that the KNN model is the most suitable algorithm for the WAFs diagnosis, whereas the prediction performance of the DT model was the second-best. This study realizes the intelligent diagnosis of WAFs, and provides technical support for the realization of intelligent ventilation.  相似文献   
6.
Hydrogen technology is widely considered a novel clean energy source, and electrolysis is an effective method for hydrogen evolution. Therefore, efficient hydrogen evolution reaction (HER) catalysts are urgently needed to replace precious metal catalysts and meet ecological and environmental protection standards. Herein, Ni–Mn–P electrocatalysts are synthesized using facile electrodeposition technology. The influence of the Mn addition on the catalytic behavior is studied by the comprehensive analysis of catalytic performance and morphology of the catalysts. Among them, the Ni–Mn–P0.01 catalyst exhibits small coral-like structures, greatly improving the adsorption and desorption of hydrogen ions and reducing the overpotential hydrogen evolution. Consequently, overpotential at 10 mA cm?2 electric current density is 113 mV, and the value of the Tafel slope achieves 74 mV/dec. Furthermore, the Ni–Mn–P catalyst shows long-time (20 h) stability at current densities of 10 and 60 mA/cm2. The results confirm that the synergistic effect of Ni, Mn, and P accelerates the electrochemical reaction. Meanwhile, the addition of manganese element can change the micromorphology of the catalyst, thereby exposing more active sites to participate in the reaction, enhancing water ionization, improving the catalytic performance. This study opens a new way toward improving the activity of the catalyst by adjusting Mn concentration during the electrodeposition process.  相似文献   
7.
8.
A ring-on-ring (ROR) test is a prevailing test method for evaluating the equi-biaxial strength of glass materials. However, current ROR test standards limit the strength and size of glass to prevent a nonlinear behavior. In this study, the feasibility of ROR testing for non-standard, high-strength glass, such as tempered or ion-exchanged rectangular glass is investigated. To this end, ROR simulation based on theory and experiment is conducted for thirty non-standard glasses with widths of 100–300 mm and aspect ratios of 1.0–2.0. As a result, the maximum measurable stress was about 215.6 MPa for 100 × 200 mm glass and 481.3 MPa for 300 × 600 mm glass with a 3% deviation, which is well above the strength of regular tempered glass. The main purpose of this work is to understand the range of aspect ratio of horizontal and vertical widths of a glass plate that can be evaluated by the standard ROR test.  相似文献   
9.
International Journal of Control, Automation and Systems - In this paper, a new controllable simulator is proposed and modeled by which, experimental tests of the aircraft’s models can be...  相似文献   
10.
This paper presents a unicycle robot which utilizes the precession effect of a double-gyroscope for lateral balancing and designs an adaptive fuzzy controller to realize the balance control according to its dynamic model. The double gyroscope structure of the unicycle robot can eliminate the pitch angle interference caused by the precession effect and improve the robot's lateral anti-interference ability. An adaptive fuzzy controller is designed based on the dynamic equations of the unicycle robot to improve its robustness. The adaptive controller part improves the anti-interference ability of the unicycle robot, and the fuzzy controller part is used as decoupling controller to reduce the interference of coupling. Simulation and experimental results to verify the anti-interference ability and decoupling effect of the designed controller.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号